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Abstract A thermodynamic framework has been pro-
vided for the interpretation of combined cyclic voltam-
metry and surface stress measurements, the latter being
obtained from wafer curvature or beam deflection mea-
surements of a solid electrode as a function of applied
potential (so-called voltstressograms). Firstly, the deri-
vation of electrocapillarity equations for solid electrodes
has been critically reviewed by starting from the Gibbs
adsorption equation appropriate for solid–electrolyte
interfaces. This allowed us to demonstrate the critical
importance of elastic surface strain in the thermodynamic
boundary conditions of the partial derivatives intervening
in the interpretation of voltstressograms. From these
considerations, it was shown for the first time that the
electrocapillarity equations for solid electrodes are not
appropriate for describing the variation of surface stress
with potential obtained from wafer curvature measure-
ments, because such measurements are intrinsically
incompatible with the constant strain condition implied in
the electrocapillarity equations. An alternative explana-
tion is provided for the experimentally observed propor-
tionality between the current density, measured in cyclic
voltammograms, and the first derivative of surface stress
with respect to potential, obtained fromvoltstressograms.
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Introduction

This paper deals with the interpretation of combined
cyclic voltammetry and so-called wafer curvature or

beam deflection measurements of solid electrodes. In
such experiments, the electrode, in the form of a thin
sheet or a cantilever, bends elastically in response to an
applied variation in potential [1]. This bending, which
for typical potential scans and electrode geometries can
give rise to an elastic strain at the electrode surface on
the order of 10�4 [2], is measured with high-resolution
optical or capacitive techniques as a change in curvature
of the solid electrode. The curvature change is then
transformed into a surface stress variation with poten-
tial, based on appropriate mechanical constitutive
equations [3]. The main interest of such experiments lies
in the fact that the surface stress evolution can often be
linked to adsorbate-induced modifications of the bond
strength in the topmost electrode layer [4, 5]. Since in
electrolytes, these adsorbate-induced changes of the
surface stress are generally accompanied by charge-
transfer effects, the combination of quantitative surface
stress measurements with cyclic voltammetry provides a
powerful electroanalytical tool for the fundamental
understanding of electrode–electrolyte interactions [6, 7].

The issue of surface stress has a long history in
electrochemistry, and can be described thermodynami-
cally by the theory of electrocapillarity. The latter name
originates from the earliest measurements of the
dependence of the surface energy of a liquid mercury
electrode on the applied potential [8]. Since for an
interface between two liquid media the surface stress is
identical to the surface energy, the following relation can
be derived between the electrode potential E, the surface
charge density r and the surface energy c for a liquid
electrode [9]:

@c
@E

� �
T ;li

¼ �r: ð1Þ

This relation, which is strictly valid at constant tem-
perature T and chemical potential li for all species i, is
well known as the classical Lippmann equation for li-
quid–liquid electrochemical interfaces. Note that the
quantity c is often also referred to as the surface tension.

J. Proost
Division of Materials and Process Engineering,
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As this nomenclature may cause confusion with the
surface stress g, we have used the term surface energy
throughout the current manuscript.

The concepts mentioned above have no bearing on
solid electrodes, because the surface stress g of a solid
differs from its surface energy c [10]. The electrocapil-
larity equation of an elastically stretched solid electrode
surface is to be described by the following, modified
Lippmann equation [11]:
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; ð2Þ

ee being the elastic surface strain. Over the years,
there has been significant confusion in the literature
concerning the proper use and interpretation of this
equation [12–15]. Of particular interest for this paper is
its applicability in combination with electroanalytical
experiments, specifically with cyclic voltammograms. To
the best of our knowledge, an as yet unclarified apparent
inconsistency still persists in the literature, where
experiments point to a correlation between the measured
current density j and the first derivative @g/@E [16],
while, similar to the well-established case of liquid metal
electrodes [17], a correlation with the second derivative
@2g/@E2 has been claimed on thermodynamic grounds
[6, 13]. It is the aim of the present work to address these
inconsistencies. In order to provide the relevant ther-
modynamic framework, we first come back to the defi-
nitions of surface stress and surface energy. We then
review the derivation of the electrocapillarity equation
(Eq. 2) for solid electrodes by starting from the Gibbs
adsorption equation appropriate for solid–electrolyte
interfaces. This thermodynamic background will allow
us to demonstrate, in the discussion in Sect. 3, the crit-
ical importance of elastic surface strain in the thermo-
dynamic boundary conditions of the partial derivatives
intervening in the interpretation of voltstressograms. It
will be shown for the first time that the electrocapillarity
equations for solid electrodes are not appropriate for
describing the variation of surface stress with applied
potential obtained from wafer curvature measurements,
because such measurements are intrinsically incompati-
ble with the constant strain condition implied in the
electrocapillarity equations. Finally, an alternative
explanation will be presented for the experimentally
observed proportionality between the current density,
measured in cyclic voltammograms, and the first deriv-
ative of surface stress with respect to potential, obtained
from voltstressograms.

Thermodynamic background

Surface stress and surface energy

The surface energy c is defined as the reversible work to
form a unit area of new surface by adding or exposing
atoms at the equilibrium interatomic spacing, i.e. at

constant strain. The surface stress g is associated with
the reversible work required to elastically deform a pre-
existing surface. In this process, surface area is altered
by changing the density of atoms at the surface. When
a liquid surface is stretched, new atoms or molecules
will arrive at the surface to accommodate the new area
created, so that the time-averaged number of atoms per
unit area remains constant. As a result, a liquid surface
is not able to sustain a surface strain, and the surface
energy for a liquid is equal to the surface stress.

Upon elastically stretching a solid surface on the
other hand, the number of atoms per unit surface area is
altered and therefore g „ c. While the surface stress of a
solid is in general to be considered a tensor gij, for a
surface possessing a threefold or higher rotation sym-
metry, which is the situation of interest throughout this
paper, gij is isotropic and can be taken as a scalar. In
that case, the following relationship exists between the
surface stress and the surface energy of a solid, known as
the Shuttleworth equation [18]:

g ¼ cþ @c
@ee

: ð3Þ

For most solids, g is of the same order of magnitude
as c, and can be positive or negative. Note that since
liquids are not able to sustain elastic stresses at their
surface, the second term in Eq. 3 vanishes and g=c.

Electrocapillarity equations of solid electrodes

In order to arrive at the electrocapillarity equation for
solid electrodes, Couchman and Davidson started from
the Gibbs adsorption equation appropriate for plane
solid–electrolyte interfaces [19]:

dc ¼ �sdT � rdE þ ðg� cÞdee �
X

i

Cidli; ð4Þ

where T is the absolute temperature, ee the elastic sur-
face strain, li the chemical potential of species i, and s,
Gi and r denote entropy, surface excesses of species i per
unit area and surface charge, respectively. At fixed T
and li, this results in :
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which is the well-known electrocapillarity equation for
an elastically stretched solid electrode, already presented
above, see Eq. 2. It describes how the solid–electrolyte
interfacial energy c changes with electrode potential at
constant temperature and composition, assuming ideally
polarized electrode behaviour. It can be noted that
Guidelli has claimed Eq. 4 to be generally valid for any
surface deformation e, rather than for its elastic contri-
bution ee only [20]. As we are only considering elastic
bending strains throughout the current manuscript, this
generalization is not relevant for the current discussion.
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The importance of the Gibbs adsorption equation
(Eq. 4) as a starting point for the further discussion of
this paper lies in the fact that it suggests that dc is an
exact differential. Although this statement was not
proven explicitly in the work by Couchman and
Davidson, indirect experimental proof suggesting that
Eq. 4 is indeed an exact differential under the restric-
tions of an ideally polarizable, elastically strained elec-
trode has recently been provided [21]. In that case, the
exact differential can, at fixed T and li, also be written
as follows:

dc ¼ @c
@E

� �
ee

dE þ @c
@ee

� �
E
dee: ð6Þ

Consequently, the following expressions for the par-
tial derivatives are obtained after comparison with Eq. 4
[21]:
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The first equality retrieves, in essence, the Shuttle-
worth equation (Eq. 3) for an electrified, isotropic solid
surface. However, as compared to the original derivation
[10, 18], it now explicitly specifies the hitherto hidden
assumption of constant potential. The second equality
(Eq. 8) explicitly specifies the critical assumption of
constant elastic surface strain. As a result, it is fully
consistent with the standard Lippmann equation (Eq. 1)
for liquid electrodes, as liquid surfaces, unlike solid ones,
are not able to sustain an elastic surface strain.

Finally, as the experimentally observed relation be-
tween voltstressograms and voltammograms involves the
first derivative of g with respect to E, we close this section
by presenting an expression for @g/@E. It is based on
Maxwell-type relations involving the second mixed par-
tial derivatives of the exact differential in Eq. 6 [21]:
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Substituting, always at constant T and li, the quantities
between square brackets with Eqs. 8 and 7 respectively,
one obtains the following equations:
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or
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This relation was obtained independently by Go-
khshtein as well [22]. Note how it explicitly indicates the

implied thermodynamic constraints of, respectively,
constant elastic strain and potential for the partial
derivatives involved.

Discussion

On the improper use of the electrocapillarity equations

In an effort to correlate the features of cyclic voltam-
mograms to either the first or second derivative of the
surface stress with respect to potential, Haiss et al. [13,
16] started by differentiating the Shuttleworth equation
(Eq. 3), g = c + @c/@ee with respect to E, to obtain,
after substitution with Eq. 8, the following expression
for the first derivative:

@g
@E
¼ �r� @r

@ee
: ð12Þ

By differentiating this expression with respect to E
after neglecting the second term @r/@ee, they then ar-
rived at the following:

@2g
@E2
¼ � @r

@E
¼ � j

@E=@t
: ð13Þ

Hence, for a voltammogram taken at a linear scan
rate (constant @E/@t), a correlation of j with the second
derivative @2g/@E2 was claimed, based on Eq. 13.

However, a number of arguments allow us to
explicitly disprove the thermodynamic grounds on
which Eq. 13 has been validated. Firstly, Eq. 12 cannot
be obtained by differentiation of the Shuttleworth
equation. In fact, a correct differentiation of the Shut-
tleworth equation would result, at constant T and li, in

@g
@E
¼ @c
@E
þ @

@E
@c
@ee

� �
: ð14Þ

Inserting Eqs. 5 and 3 for the first order differentials
on the right-hand side then results in

@g
@E
¼ �rþ g� cð Þ @ee

@E
þ @

@E
g� cð Þ ð15Þ

which, after rearrangement, simply retrieves the elec-
trocapillarity equation Eq. 2 for solid electrodes, instead
of Eq. 12. It is obviously not surprising that the Shut-
tleworth relation cannot be an appropriate starting
point for obtaining an expression for @ g/@ E, as both
expressions were shown above to result from the same
general Gibbs adsorption equation.

The error made in arriving at Eq. 13 from the Shut-
tleworth equation basically results from neglecting the
second term in Eq. 5 or, equivalently, by wrongly using
Eq. 8 to obtain an expression for dc/E. In this respect,
one of the major sources of confusion in the literature
has been the following: although, formally, the gener-
alized Lippmann equation (Eq. 5) for solid electrodes
reduces to the one for liquid electrodes (Eq. 8) only at
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constant elastic strain, in practice, both equations can be
used for describing the electrocapillarity behaviour of
solids because the last term in Eq. 5 is generally negli-
gible. Its magnitude has been estimated to be on the
order of 10�8 C/m2 [14], which is much smaller than the
surface charge densities that are generally measured in
electroanalytical experiments. However, it is clear that in
formal, thermodynamic derivations of electrocapillarity
phenomena involving solid electrodes, as the one used
by Haiss et al. [16] for wrongly arriving at Eq. 13, it is
the generalized Lippmann equation (Eq. 5) that should
be used (a small value of a function does not necessarily
mean a small value of the function’s derivative).

In general, the use of Eq. 8 in any thermodynamic
derivation involving the interpretation of wafer curva-
ture measurements of solid electrodes necessarily leads
to erroneous results, as per definition, elastic strain is
involved during the measured bending of the electrode
with applied potential. For the same reason, the con-
dition of constant strain also impedes the use of the
Gokhshtein equation (Eq. 11) for the interpretation of
voltstressograms, because this condition is again
inherently incompatible with wafer curvature or beam
deflection experiments. In other words, wafer curvature
measurements do not allow to investigate the variation
of surface stress with applied potential at constant
strain. The above argument stresses the critical impor-
tance of correctly specifying the implied thermody-
namic boundary conditions in all the partial derivatives
intervening in the interpretation of voltstressograms.
The lack of such specification is, in our opinion, one of
the major reasons for the still-persisting thermody-
namic inconsistencies in the literature regarding this
subject.

Alternative explanation

From the discussion above, it is clear that an explana-
tion for the relation between voltammograms and volt-
stressograms should not involve any of the
electrocapillarity equations. The correlation between
both can, in fact, be understood in a rather straight-
forward way by considering the contribution of specific
adsorption, as originally suggested by Guidelli [20]
based on experiments involving the solid–vacuum
interface [23, 24]. We develop a similar argument here
for the solid–electrolyte interface by starting from a well-
established experimental observation, namely the strict
proportionality between the current density j measured
in cyclic voltammograms, and the first derivative @g/@E
obtained from voltstressograms [16]. This can be
expressed as

j ¼ K
dg
dE

; ð16Þ

K being a proportionality constant with dimensions t�1.
Since j ” dr/d t and d E ” RÆd t, R being the constant
scanning rate of a linear potential scan, Eq. 16 becomes

dr
dE
¼ K

R
dg
dE

: ð17Þ

Hence, if Eq. 16 is valid, as is indeed observed
experimentally, this also implies that during combined
voltammetry and wafer curvature experiments the fol-
lowing condition holds:

dg
dr
¼ constant: ð18Þ

Regarding the latter variation of surface stress g
with surface charge density r, Schmickler and Leiva
[24] have pointed out, based on model calculations
involving jellium-type and lattice gas models, that it is
mainly governed by the response of the metal electrode
itself, through the change in the bond charge density at
the topmost electrode layer. However, they also con-
cluded that any fine structure that may be observed
must be due to adsorption at specific sites, the contri-
bution of adsorbates to g depending strongly on the
coverage. In this respect, experimental evidence from
the literature has indeed confirmed the validity of
Eq. 18, at least in the limit of low coverages, by
recording g directly as a function of r by on-line
integration of the current density [16]. In fact, from a
theoretical point of view, Schmickler and Leiva have
already provided direct proof, based on their model
calculations, for the validity of the experimental
observation expressed in Eq. 16, at least in the case
where the contribution of adsorbates to g can be con-
sidered to be linear [24]. Our own argument, outlined
above, is fully compatible with their findings, but based
on a different starting point, namely an experimentally
confirmed and accepted relation (Eq. 18) between two
experimentally accessible key parameters (g and r) of
combined voltstressograms and voltammograms.

A final note concerns the cited experimental evidence
for the validity of Eq. 18. While in [16] the constancy of
d g/dr was confirmed for combined voltammetry and
wafer curvature experiments, Gokhshtein [22] experi-
mentally assessed the quantity d g/dr by so-called es-
tance techniques, and showed it to vary significantly
over a relatively small potential range, including several
sign changes. His experiments however aimed at con-
firming the validity of the following thermodynamic
relationship:

@g
@r

� �
ee

¼ @E
@ee

� �
r

; ð19Þ

the derivation of which has been discussed in [21]. The
estance technique was chosen in this respect because it
involves differential surface stress measurements at
infinitesimal strains (smaller than 10�8) [26], a pre-
requisite imposed by the boundary condition of the
left-hand side term of Eq. 19. As a result, these mea-
surements have no bearing on the wafer curvature and
beam bending experiments considered in [16] and
throughout this work, which for typical potential scans
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and electrode geometries can give rise to elastic bending
strains at the electrode surface on the order of 10�4 [2].

Conclusions

We have provided a number of arguments for resolving
still persisting apparent thermodynamic inconsistencies
in the literature regarding the interpretation of com-
bined cyclic voltammetry and wafer curvature mea-
surements of solid electrodes. In particular, we have
shown that

1. The electrocapillarity equations for solid electrodes
are not appropriate for describing the variation of
surface stress with applied potential obtained from
wafer curvature or beam deflection measurements.
The major reason is that such measurements are
intrinsically incompatible with the constant strain
condition implied in the electrocapillarity equations.

2. The experimentally observed proportionality between
the current density j measured in cyclic voltammo-
grams, and the first derivative @ g/@ E obtained from
voltstressograms is a consequence of the linear
dependence of surface stress on charge density. The
latter results from the well-established experimental
observation that, at least in the limit for low cover-
ages, the change in surface stress caused by chemi-
sorption is proportional to the surface concentration
of the chemisorbed species.
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